
Abstract. A general con®guration interaction (CI) al-
gorithm incorporating one- and two-electron spin-orbit
operators is presented. The algorithm is determinant
based and enables the use of highly vectorized non-
relativistic algorithms in the most operation-intensive
part. Excitations between a and b spin orbitals are
avoided in the time consuming parts by performing
separate S� and Sÿ operations. The relativistic CI
expansions are often very large, so the algorithms
require only the presence of segments of vectors in
memory. Double-group symmetry is fully accounted for
and time-reversal symmetry is exploited for both even
and odd numbers of electrons.

Key words: Spin-orbit coupling ± Determinant
con®guration interaction ± Time-reversal symmetry ±
Relativistic con®guration interaction

1 Introduction

The development of algorithms for accurate and e�cient
description of relativistic e�ects has received consider-
able attention during the last decade [1]. The RECP
(Relativistic E�ective Core Potentials) methods have
been available for a long time [2] and have been applied
to a broad spectrum of problems. Lately, however, all-
electron methods centred around the Dirac equation
have appeared which enable the theorist to approach the
problems of relativistic e�ects in chemistry with greater
accuracy. The four-component Dirac-Coulomb method
has developed over the last few years and can now be
applied to small and medium-size molecules [3]. This
method is still relatively resource-demanding and for
larger systems more e�ective approximate one- and two-
component methods have been developed.

Calculations using one-component spin-free relativ-
istic operators may be done on a routine basis with
practically no extra cost, whereas the inclusion of spin-

dependent terms is far more complicated and relatively
few programs are available which include these terms.
For this reason spin-dependent relativistic e�ects are
often neglected. For ground state properties and highly
coordinated (saturated) compounds this is often rea-
sonable but for many compounds, including the third
row transition metals, spin-orbit interactions are of the
same order as the chemical bond.

The spin-orbit interaction brings about a fundamen-
tal change of practice. These changes are a consequence
of the symmetry properties of the spin-orbit Hamiltoni-
an. Corresponding to a scaler observable, both the
electrostatic Hamiltonian and the spin-orbit Hamilto-
nian �Hso� are scalar operators. The electrostatic Ham-
iltonian, including spin-independent relativistic e�ects,
also has scalar space and spin parts and will conserve
any space or spin symmetry present in the wave function
on which it operates. But �Hso� is a contraction of two
vector operators in orbital and spin space and will in
general not preserve space or spin symmetry. It shows
the same symmetry properties as the Dirac operator and
the eigen states will transform according to the corre-
sponding double-group symmetry, containing symmetry
operations that work both on space and spin coordinates
[4]. Accordingly, a new set of programs is required to
treat the spin-orbit coupling.

Due to the computational expense, the inclusion of
spin-orbit coupling is usually postponed until the last
stage of a calculation, and the easiest way to handle the
e�ect is to include it as a perturbation. This has been
done for the lighter elements since the 1970s using the
Breit-Pauli operator [5, 6]. However, moving towards the
heavier atoms, the perturbation approach becomes
questionable, and the e�ect should be included using
some variational procedure.

The Breit-Pauli operator, although not bounded from
below, may be used in variational valence methods but
overestimates spin-orbit splittings for heavy elements.
There are, however, other methods available for
the treatment of spin-orbit coupling which are not
hampered with these di�culties. Most of them employ
e�ective core potential techniques, for instance
calibrated to reproduce four-component results [7]. An
all-electron method which has gained prominence overCorrespondence to: O. Gropen
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the last decade is based on the Douglas-Kroll transfor-
mation, resulting in a well-behaved spin-orbit operator
that can be used in variational calculations on heavy
elements [8, 9].

The dominant spin-orbit e�ects can often be obtained
as the spin-orbit interactions of a limited set of close-
lying states. The latter states can either be non-relativ-
istic or include the spin-conserving relativistic e�ects. A
very e�cient variational solution is then to calculate the
spin-orbit matrix over this set of wave functions and
diagonalize the resulting matrix. Programs of this type
are available [10, 11] and have been applied with success
for elements as heavy as platinum [9, 12].

In this approach one has, however, to assume that
electron correlation and spin-orbit coupling are additive
and that the relativistic wave function can be described
as a linear combination of a small number of wave
functions of non-relativistic symmetry. None of these
assumptions hold in general. The relative weights of the
various determinants in the CI expansion are determined
solely by the electron repulsion operator, whereas the
spin-orbit operator shows completely di�erent proper-
ties. For instance, single excitations are relatively
unimportant for rÿ1ij , whereas they are very important
contributors to spin-orbit matrix elements. Leaving
them out would result in underestimation of the spin-
orbit coupling. It is also to be expected that the amount
of correlation energy will di�er between, for instance, a
p1=2 and a p3=2 shell when the spin-orbit coupling is large,
requiring a simultaneous treatment of the two e�ects.

Probably a less serious drawback is that the method
relies on the validity of the approximate spin-orbit
selection rules within the Russel-Saunders coupling
scheme, accounting only for L-S states that couple
directly through the spin-orbit Hamiltonian.

Within the two-component theory the most through
approach would be to develop both two-component self-
consistent ®eld (SCF)/multicon®gurational (MC) SCF
and CI (or some other correlation method) codes. SCF
and CI programs of this category has been developed by
the Siegen group [13±16], but no MCSCF/Multi-re-
ference MRCI package is available to our knowledge.

An intermediate approach has been chosen in this
work, introducing the spin-orbit operator in the CI step,
thus neglecting spin-orbit coupling during the orbital
optimization. Conventional CI codes of this type are
available [17±20].

An accurate description of electron correlation is still
a challenge to quantum chemistry. Dolg and Stoll sug-
gest in a recent review [21] that the bottleneck in per-
forming accurate relativistic calculations is connected to
the correlation problem rather than to the actual form of
the relativistic operator. The problem at hand is then
to ®nd a method, based on a two-component operator,
which is able to include an extensive part of the corre-
lation energy, thus treating very long CI expansions in
an e�cient way.

The spin-orbit CI program presented below is a
generalization of a direct non-relativistic CI code by
Olsen [22±24]. The program uses a restricted active space
(RAS) wave function de®ned by separating the orbital
space into three subspaces I, II and III and imposing

restrictions on the minimal occupation of space I
and maximal occupation of space III. A core of doubly
occupied (inactive) orbitals may also be included. The
strong point about the RAS concept is that a wide range
of CI expansions can be used in an e�cient manner.

The algorithms are determinant based and, using the
idea of Handy [25], are separated into a and b strings
which allows very e�cient vectorization of the time-
consuming r algorithms. Another important feature is
that the structure of the CI and r vectors allows subblocks
of the vectors to reside in the memory at any one time.

This presentation will concentrate on the problems
connected with spin-orbit CI and how they can be
solved, while maintaining the original structures and
keeping the non-relativistic r algorithms as the basic
production units of the program. Section 2 will focus on
di�erent aspects of the theory connected to spin-orbit
coupling, including time-reversal and double-group sym-
metry, whereas Sect. 3 will deal with the realization of
the spin-orbit code based on the theory and facilities
o�ered by the non-relativistic code. Concluding remarks
are summarized in Sect. 4.

2 Theory

The complications arising from the inclusion of the spin-
orbit coupling can be illustrated by considering a one-
electron spin-orbit operator [5]

Hso �
X

i

n�ri�li � si ; �1�

where li and si are the total orbital and spin angular
momenta, respectively, and n�ri� is a radial function,
being roughly proportional to the square of the nuclear
charge [26].

For light atoms, the spin-orbit coupling is much
smaller than the electron repulsion and the LSJ coupling
scheme is appropriate, having zeroth-order wave func-
tions with well-de®ned quantum numbers L, S, J and
MJ . The quantum numbers J and MJ correspond to the
total angular momentum and its projection. The spin-
orbit coupling within a basis of LSJ states follows the
selection rules

S � S0 � 1 � jS ÿ S0j ; �2�
L� L0 � 1 � jLÿ L0j �3�
and

dJJ 0 ; dMJ MJ 0 : �4�
The spin-orbit coupling increases with increasing nuclear
charge, and at some point the zeroth-order L-S picture
breaks down and the orbital and spin quantum numbers
lose their meaning. The only angular quantum numbers
being strictly conserved are then J and MJ , correspond-
ing to the so-called J-J coupling scheme. The only valid
selection rules are then given by Eq. (4)

For diatomic and typical linear molecules, the pro-
jection of the angular momentum ML, the total spin S
and the spin projection MS are the conserved quantum
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numbers for a non-relativistic Hamiltonian. Adding
spin-orbit coupling reduces the quantum numbers to MJ .

For a typical polyatomic molecule, the symmetry of a
state is described by the irreducible representations
(irreps) of a point group in non-relativistic quantum
mechanics, and by the irreps of the corresponding double
group in relativistic quantum mechanics. The symmetry
properties of the spin-orbit Hamiltonian in a molecular
environment will be treated below. We will concentrate
on D2h and subgroups, which in the following will be
termed binary groups as introduced by Saue [27].

2.1 The spin-orbit operator

There are a number of di�erent spin-orbit Hamiltonians
in use, some of which contain both one- and two-
electron terms, whereas others are e�ective one-electron
operators, based on mean-®eld or ECP (E�ective Core
Potential) approaches [7, 28].

Whatever the speci®c form, they show the same
symmetry and spin properties and may all be written as

Hso �
X

i

Ai � si ; �5�

where the sum runs over all electrons i, and Ai and si
denote the spatial and spin parts of Hso, respectively.
The operator Ai can contain a sum over electrons,
thereby allowingHso to contain a two-electron operator.

As an illustration consider the Breit-Pauli operator

Hso � a2

2

X
A;i

ZA
riA � pi� � � si

r3iA
ÿ
X
i6�j

�rij � pi� � �si � 2sj�
r3ij

 !
�6�

which can be presented in the form of Eq. (5) by de®ning

Ai � a2

2

X
A

ZA

r3iA
�riA � pi� �

X
j 6�i

rij � �2pj ÿ pi�
r3ij

( )
: �7�

It is well known that the Breit-Pauli operator is
unbounded from below, suggesting that it is unsuited
for unrestricted variational use. In a limited expansion of
con®gurations of moderate energies, there is no room for
variational collapse, however, and the Breit-Pauli oper-
ator might work well, although it often overestimates the
spin-orbit splitting. Forms of spin-orbit operators suited
for variational use are available and may be put in the
form of Eq. (5).

In a basis of states of well-de®ned space and spin
symmetry, Hso will cause a mixing of previously non-
interacting states. It is most convenient to study this with
the spin part of the spin-orbit operator in the spherical
form and the space part of the operator in the cartesian
form, since the spherical components of the angular
momentum operator do not transform as irreps of
the binary groups. Expanding the scalar products and
introducing the spherical components of s

s�1 � ÿ
sx � isy
ÿ ����

2
p ; s0 � sz; sÿ1 �

sx ÿ isy
ÿ ����

2
p ; �8�

the general spin-orbit operator in Eq. (5) yields

Hso �
X

i

Aix siÿ1 ÿ si�1� �=
���
2
pn

� iAiy �siÿ1 � si�1�=
���
2
p
� Aiz si0g : �9�

For the spatial parts we note that Ax, Ay and Az
transform with the components Rx, Ry and Rz of the
rotation operator and have a well-de®ned symmetry
with in D2h and the subgroups.

Since the rotation operators commute with the in-
version operators

Rx; i� � � Ry ; i
� � � Rz; i� � � 0 ; �10�

it is found that Hso always preserves spatial inversion
symmetry. The operators Rx;Ry and Rz are, however, not
invariant under any C2 rotation perpendicular to their
own rotation axis or with any re¯ection operation
parallel to it. The result is that no other spatial symmetry
than inversion is preserved for the binary groups. The
point groups for spatial symmetry operations become
thus either Ci or C1, for systems with or without
inversion symmetry, respectively. For the matrix element
between two determinants w1 and w2 and one spatial
component Al to be non-zero one must require, using
the matrix element theorem, that the direct product
between the irreps

C w1� � 
 C Al
ÿ �
 C w2� � �11�

contains the totally symmetric representation.
For the spin part we have

Hso; S2
� � 6� 0 ;

Hso; Sz� � 6� 0 �12�
and spin symmetry is not conserved. It is easily seen
from Eq. (9) that a non-zero matrix element requires
that the spin part satis®es DMs � �1 for the x and y
terms whereas the z term requires DMs � 0.

2.2 Time-reversal symmetry

As suggested above, spin symmetry will not be preserved
by the Hamiltonian once the spin-orbit term is intro-
duced. There is, however, another symmetry operation
related to spin that commutes with the Hamiltonian in
the absence of external magnetic ®elds, namely the time-
reversal operator �K̂� [29]. In a two-component theory it
may be de®ned as

K̂ � ÿiryK̂0 ; �13�
where ry is the Pauli-spin matrix and K̂0 a complex
conjugation operator.

The single particle fermion functions are doubly de-
generate by Kramer's theorem [4], and the two degener-
ate states are related by time-reversal symmetry. Letting
K̂act on a single a or b spin function yields

K̂a � b ;

K̂b � ÿa : �14�
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The degenerate spin functions a and b are termed
partners of a Kramer's pair, as are all fermion functions
related in this way by time-reversal.

Before examining the behaviour of N-electron func-
tions under time reversal, we adopt the convention of
writing all a creation operators in front of all b creation
operators, in which case a Slater determinant (SD) can
be written

jI ; Ji � ja�I�b�J�i
� a�I�b�J�jvaci ; �15�

where a�I� is an ordered product of a creation operators
and b�J� an ordered product of b creation operators; an
a and b string, respectively.

Applying the time-reversal operator to a SD con-
taining real orbitals gives

K̂jI; Ji � �ÿ1��na�1�nb jJ ; Ii ; �16�
where na and nb are the number of electrons with a and b
spin, respectively. So K̂ changes the a string to the
corresponding b string and vice versa, together with a
possible change of phase, producing a ÿMs determinant
from a �Ms determinant.

If the system contains an even number of electrons, the
e�ect of the Kramer's operator on a determinant jI; Ji is
given by

K̂jI; Ji � jJ ; Ii �17�
from Eq. (16).
It is easily seen that the following simple combinations

�I; J���� � � jI; Ji � jJ ; Ii ;
�I ; J�ÿj i � jI; Ji ÿ jJ ; Ii ; �18�
are eigenfunctions of the Kramer's operator with an
eigenvalue �j� equal to �1 or ÿ1:
K̂ �I; J���� � � �1 �I; J���� �

;

K̂ �I; J�ÿj i � ÿ1 �I ; J�ÿj i : �19�
Note that the symmetry operation of time-reversal is

not included in the double groups and may be exploited
in addition to double-group symmetry.

2.3 Double-group symmetry

The spin-orbit operator shows the same commutation
properties as the Dirac operator, and symmetry opera-
tions other than inversion commuting with Hso will
have to work both on space and spin coordinates. For
functions with half-integer angular momentum, such as

the spin functions a and b, the unit operation is a
rotation by 4p, whereas a rotation of 2p, corresponding
to the unit operation in ordinary groups, leads to a
change of sign. The double groups are constructed by
introducing an extra element �E representing a rotation
by 2p around an arbitrary axis [4]. The additional
(fermion) irreps appearing describe the transformation
properties of fermion functions and will have a negative
character for �E, whereas the original single group
(boson) irreps are invariant under the operation.

The double group C2v is shown in Table 1. The four
boson irreps are equivalent to the irreps of the C2v spa-
tial group, and a new two-dimensional irrep E describing
the behaviour of fermion functions of the group is
shown.

Examples of spin functions spanning the various
representations are also shown in Table 1. A Kramer's
pair, such as a and b, together span the irrep E. A similar
picture is seen for the point groups D2h and D2, whereas
they span di�erent but degenerate one-dimensional ir-
reps for Cs, C2 and C2h. The groups C1 and Ci are the
most complicated, with the Kramer's partners spanning
the same singly degenerate representation.

We further see that the cartesian components sx, sy ,
sz of a triplet-spin function span the irreps B2, B1 and
A2 whereas the singlet-spin function spans the totally
symmetric representation. On comparing these sym-
metry-adapted functions with the Kramer's eigenstates
de®ned in Eq. (18) it can be seen that time-reversal
symmetry and double-group symmetry coincide in this
case.

The combinations abÿ ba and aa� bb have a posi-
tive j for K̂ and the combinations of ab� ba and
aaÿ bb a negative j. This might be confusing since, as
indicated by Eq. (19), the plus combinations always have
j � �1 and minus combinations j � ÿ1. This is a
consequence of the alpha-beta string formalism in which
creation operators are permutated, putting all a creation
operators ®rst �i.e. a�iaa�jb � a�iba�ja � a�iaa�jb � ÿa�jaa�ib�:

The relation between double-group and time-reversal
symmetry is the same for the groups D2h and D2. For the
lower symmetry groups the Kramer's eigenstates cor-
respond to ®xing a phase between equivalent �Ms and
ÿMs states which is otherwise arbitrary as far as the
Hamiltonian is concerned. Here lies potential for mak-
ing the computation more e�ective.

2.4 Spin-orbit CI

When the spin-orbit operator is introduced, the structure
of CI space alters, exhibiting now the symmetry of a
relativistic Hamiltonian. Following the exact selection

Table 1. The C2v double group �D2 E �E C2�z�;C2�z��E rv�xz�; rv�xz��E rv�yz�;rv�yz��E

A1 1 1 1 1 1 abÿ ba
A2 1 1 1 )1 )1 Rz; ŝz; ab� ba
B1 1 1 )1 1 )1 Ry ; ŝy ; aa� bb
B2 1 1 )1 )1 1 Rx; ŝx; aaÿ bb
E 2 )2 0 0 0 �a; b�
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rule analogue of Eq. (4) for molecules, the space must
contain all possible N -particle states of a given double-
group symmetry. A consequence is that all possible Ms
values are included. Note that the dimension of the CI
space is therefore the same as that for a four-component
CI method.

As an example we consider a system having a refer-
ence wave function with one open shell, from which we
allow all single and double excitations, corresponding to
a maximum of ®ve open shells. In the spin-orbit CI case,
this corresponds to including six Ms values in the CI
expansion. Furthermore, the CI vector will generally be
complex, since the x and z terms ofHso are imaginary. In
the absence of spatial symmetry, the number of varia-
tional parameters should then be roughly 12 times that
of a non-relativistic CI.

A further illustration of the computational demands
is made by looking at the spin-orbit operator in the
form of Eq. (9). We ®nd ®ve di�erent combinations of
space and spin operators, and one of these terms is
comparable to the non-relativistic Hamiltonian in
complexity if the spin-orbit operator contains two-elec-
tron terms. Calculating one element of the r vector
should then take roughly 6 times as long when the spin-
orbit operator has been added to the Hamiltonian, and
calculating the whole r vector in the example above
should take 12� 6 � 72 times as long as in the non-
relativistic case.

In a non-relativistic CI the length of the CI expansion
may be reduced considerably by the use of a CSF
(Con®guration State Function) basis. In the spin-orbit
CI however, the numbers of CSFs and SDs are in fact
the same, and the simplicity of the determinant basis is
clearly favourable compared to the CSF basis, for which
the number of coupling coe�cients will grow drastically
compared to the non-relativistic case.

The advantage of the CSF approach is that one can
limit the CI expansion by discarding multiplets which
are expected to be unimportant, for instance by enforc-
ing the approximate selection rule S � S0 � 1 � S ÿ S0j j.
This approach becomes increasingly more e�ective as
the number of open shells increases, but relies of course
on the validity of the selection rule.

In a SD basis the selection rule DMs � 0;�1 also
determines the ®rst-order interacting subspace. For
states of atoms and linear molecules, the proper zero-
order wave functions are linear combination of states
with di�erent values of Ms, so the restriction on Ms does
not lead to a restriction on the interacting spaces. For
molecules with non-degenerate spatial symmetry, the
DMs � 0;�1 can as a rule be used to advantage.

3 Implementation

As already mentioned an e�cient non-relativistic CI
code was at our disposal and the idea was to maintain
the basic structures and algorithms of the existing
program, building the spin-orbit peculiarities around it.

The spin-independent Hamiltonian can be expressed
entirely in terms of singlet-spin operators, i.e.

Sij�0; 0� � 1���
2
p a�iaaja � a�ibajb

� �
; �20�

preserving the number of a and b electrons when acting
on a determinant. The spin-orbit operator also contains
triplet operators in spin space, given by

Tij�1; 1� � ÿa�iaajb ; �21�

Tij�1; 0� � 1���
2
p a�iaaja ÿ a�ibajb

� �
; �22�

Tij�1;ÿ1� � a�ibaja �23�
and will not preserve the number of a and b electrons.
We can therefore not restrict the CI expansion to a given
value of Ms.

The operator Hso is furthermore not, in general, in-
variant to the symmetry operations of the non-relativistic
point group, and one can therefore not associate a single
spatial symmetry to a relativistic wave function. Exam-
ining Hso in Eq. (6) reveals also that the two-electron
term is, in contrast to 1=rij, not symmetric in the two-
particle indices. Furthermore, an angular momentum
operator is anti-symmetric, i.e. lij � ÿlji, leading to the
following permutation rules for one- and two-electron
spin-orbit integrals

hij � ÿhji ; �24�
gîjkl � gîjlk � ÿgĵikl 6� gk̂lij ; �25�
where gîjkl � �i�1�j�1�jk�2�l�2�� and the hat indicates
that the momentum operator is working on particle 1.
The non-relativistic integrals are symmetric with respect
to all the permutations of indices shown above.

In extending a non-relativistic program to include the
spin-orbit operator, a number of generalizations must
thus be introduced. The CI vector must contain several
spatial symmetries and spin projections, and general
one- and two-electron operators that change spin pro-
jection and spatial symmetry must be allowed. A radical
approach would be to completely abandon spatial
symmetry and spin projection. This would, however, be
computationally expensive, since the well-de®ned sym-
metry properties of the individual operators would be
neglected and lead to states that are di�cult to classify.
Instead we will use an approach that makes maximal use
of the non-relativistic symmetry properties.

Below we will ®rst describe the features of the non-
relativistic program that are necessary for further
discussion and then focus on how the problems
encountered in the generalization of spin-orbit CI are
solved. A more detailed presentation of the non-rela-
tivistic program is given in Refs. [22±24].

3.1 The framework

The RAS is a simple way of de®ning restricted CI spaces
and may be handled very e�ciently in direct CI
iterations. The active orbital space is divided into three
subspaces RAS1, RAS2 and RAS3, requiring a minimal
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number of occupied spin orbitals of RAS1 and a
maximal number in RAS3.

Splitting the determinants into a and b strings as
shown in Eq. (15) the CI vector may be written as

j0i �
X
Ia;Ib

C Ia; Ib
ÿ �

Ia; Ib
�� �

; �26�

where indices I; J have been replaced by Ia; Ib. In the case
of a full CI, the CI vector has the form of a matrix in this
representation, but all a and b strings are not allowed to
be combined for restricted CI spaces, and the structure
of the CI vector does not automatically result in a matrix
notation.

A graphical string representation provides an e�cient
way of ordering the strings [34], and this may be realized
in several ways. De®ning separate occupation graphs for
di�erent types, the latter referring to the number of
electrons in RAS1 and RAS3 occupations, allows a
simple handling of the RAS1-RAS3 restrictions by re-
stricting which graphs of a and b strings can be com-
bined. A unique index Ia=Ib for each string is obtained by
the lexical ordering suggested by Duch [34]. The strings
may further be ordered according to symmetry so all
strings of the same symmetry and type have contiguous
addresses. The CI vector (Eq. 26) will now have the form
of a blocked matrix, and each subblock may be treated
in the same way as a full CI matrix.

We further need in the direct CI an e�cient way of
obtaining the e�ect of a creation or annihilation opera-
tor on a string and this information can easily be ob-
tained from the graphs. A table for each string I giving
the e�ect of all possible annihilations and creations

aijIi � �jJi ;
a�j jIi � �jKi ; �27�
can be calculated. This implies that strings not contained
in the CI space have to be de®ned. At most two electrons
are annihilated by the excitation operators in H, thus
string groups containing na to na ÿ 2 electrons have to be
de®ned for a strings and likewise for b strings, even if
only the groups containing na and nb are allowed in the
CI expansion. The e�ect of several creation/annihilation
operators may be accessed in the r routines by repeated
table lookups.

The terms string group, referring to the number of
electrons, was introduced above, and the spin-orbit CI
requires that several groups of strings are allowed in the
CI expansion. Inspired by the approximate selection rule
DMs � 0;�1 we introduce the possibility of restricting
the allowed range of Ms values by giving a fundamental
or reference Ms and an interval D, allowing an expansion
over all values from Ms ÿ D to Ms � D.

The necessary string information is then simply
provided by de®ning the additional string groups and
``relaxing'' the restrictions on which graphs can be
combined. The strings are now ordered according to
group, symmetry and type.

3.2 Relativistic CI expansion

The relativistic CI-vector will have the general form

j0i �
X
Ms;K

X
Ia;Ib

MsKCr IaIb
ÿ �

Ia; Ib
�� �

� i
X
Ia;Ib

MsKCi Ia; Ib
ÿ �

Ia; Ib
�� �

: �28�

The indices Ms and K refer to the spin projection and
spatial symmetry, respectively. The determinants can be
divided at a number of di�erent levels. The collection of
all the determinants of the CI expansion is called a CI
super space. The collection of determinants with given
spin projection, spatial symmetry, and real/imaginary
characters corresponds to a non-relativistic wave func-
tion, and is in the following referred to as a CI space. A
CI super space is the sum of CI spaces. The CI spaces
constitute the basis units of the program and they can be
divided into symmetry blocks, where each symmetry
block corresponds to the determinants with a given Ms,
real/imaginary character and symmetries of the a and b
strings. The symmetry blocks can again be divided into
symmetry-type blocks where each symmetry-type block
corresponds to all determinants with given Ms, real/
imaginary character, symmetries of the a and b strings
and type of the a and b strings.

In the relativistic CI algorithm we must calculated the
r vector in the CI super space from a CI vector in the CI
super space. We will organize this as a sequence of cal-
culations, each only giving the contribution to the r
vector in a given space from a CI vector in a given CI
space. The above blocking of CI spaces opens the pos-
sibility of working with individual segments of the CI
and r vectors in the memory at any one time, so that the
sigma routines calculate the contribution from a given
symmetry-type-type block of the CI vector to a given
symmetry-type-type block of the r vector. The two-
electron integrals may be sorted by symmetry and type,
so that the contributing block is easily accessed in this
step. Before describing the relativistic CI routines in
greater detail it is advantageous to brie¯y review the
corresponding non-relativistic codes.

3.3 Non-relativistic sigma algorithms

Any spin-independent Hamiltonian may in second
quantization form be written as

H0 �
X

ij

hijEij � 1=2
X
ijkl

�ijjkl��EijEkl ÿ djkEil� ; �29�

where Eij � a�iaaja � a�ibajb. The central task in direct CI
schemes is the construction of the r vector which is
de®ned by

r Ia; Ib
ÿ � �X

Ja;Jb

IaIb H0j jJaJb

 �

C Ja; Jb
ÿ �

; �30�

The r vector has to be generated directly from the
orbital representation of the operator and is the most
time-consuming step of a direct CI iteration. Several
di�erent approaches to the construction of r have been
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tried out by Olsen [24]. The most e�cient ones are made
possible by separating the r vector into three contribu-
tions

r � raa � rab � rbb ; �31�
with

raa Ia; Ib
ÿ � �X

Ja

(X
ij

Ia a�iaaja

�� ��Ja

 �

hij

�
X

i>k;l>j

Ia a�iaa�kaalaaja
�� ��Ja


 � �ijjkl��

ÿ �iljkj��
)

C Ja; Ib
ÿ �

rab Ia; Ib
ÿ � �X

Ja;Jb

X
ijkl

Ib a�ibajb

��� ���Jb

D E
� Ia a�kaala

�� ��Ja

 ��ijjkl�C Ja; Jb

ÿ � �32�

rbb Ia; Ib
ÿ � �X

Jb

(X
ij

Ib a�ibajb

��� ���Jb

D E
hij

�
X

i>k;l>j

Ib a�iba�kbalbajb

��� ���Jb

D E
�ijjkl��

ÿ�iljkj��
)

C Ia; Jb
ÿ �

:

The potential for vectorization may be easily compre-
hended for raa and rbb as excitations are only performed
on the a and b strings, respectively, and allows
vectorization over the string that remains unchanged.
We will not discuss further the algorithms used for the
construction of the three contributions to r, but only
note that a number of schemes for the e�cient
evaluation have been proposed.

3.4 Spin-orbit sigma algorithms

In generating the spin-orbit contributions to the r vector,
we intend to apply the non-relativistic r algorithms.
However, as already mentioned above, a number of
di�culties have to be overcome, since the spin-orbit
operator has a fundamentally di�erent structure. In the
second quantization formalismHso can be written as

Hso �
X

ij

hij � sij �
X
ijkl

~ijjkl
ÿ � � sijEkl ÿ djksil

ÿ �
: �33�

For the Breit-Pauli operator the one-electron integrals
are of the form

hij � a2

2

X
A

ZA i�1� rA � p1
r3A

���� ����j�1�� �
�34�

and the two-electron integrals are de®ned as

~ijjkl
ÿ � � gîjkl � 2gijk̂l;

gîjkl �
a2

2
i�1�k�2� r12 � p1

r312

���� ����j�1�l�2�� �
: �35�

The excitation operators sij have cartesian components

sx
ij � 1=2 a�iaajb � a�ibala

� �
sy

ij � ÿi=2 a�iaajb ÿ a�ibala

� �
sz

ij � 1=2 a�iaaja ÿ a�ibajb

� �
: �36�

It is clear from Eqs. (33) and (36) that the non-
relativistic r algorithms can not be used directly for
the x and y components, since sx

ij and sy
ij contain

operators of the form a�iaajb and a�ibaja, exciting electrons
between a and b spin orbitals.

For a CSF-based approach, it is possible to avoid
treating these excitation operators by expressing sij in
terms of the components of the triplet tensor operator Tij
as given in Eq. (21). In a basis of states having well-
de®ned spin quantum numbers S and Ms, one can avoid
treating the a$ b excitations directly. The Tij�1; 1� and
Tij�1;ÿ1� operators in Hso are replaced by the Tij�1; 0�
component, and matrix elements between states di�ering
in the spin projection may then be calculated by the
Wigner-Eckhart theorem. Only a few routines for
calculating 3J coe�cients are required in addition to
e�cient routines for handling the Ms � 0 components
of triplet operators.

The possibilities of utilizing the tensor properties of
the excitation operators are more limited in determinant-
based CI, since S is no longer de®ned. However, as we
will show later, it is trivial to generalize a determinant
program for singlet operators to treat the Ms � 0 com-
ponents of triplet operators. One can exploit a somewhat
less complete formulation of the transformation prop-
erties if ITOs (Irreducible Tensor Operators), expressed
through the following relations

Tij�1; 1� � 1=
���
2
p

S�; Tij�1; 0�
� �

Tij�1;ÿ1� � 1=
���
2
p

Sÿ; Tij�1; 0�
� �

: �37�
Using this result, one can rewriteHso entirely in terms of
the m � 0 component of the triplet operator Tij and the
step operators S� and Sÿ.

For simplicity we de®ne an operator

Ol �
X

ij

hl
ijTij�1; 0� �

X
ijkl

~ijjkl
ÿ �

l

� Tij�1; 0�Ekl ÿ djkTil�1; 0�
� �

: �38�
Compared with Eq. (29) we see that Ol has a structure
which is very similar to the spin-independent Hamilto-
nian. The operator Tij�1; 0� di�ers from Eij by a minus
sign for the bb part and a factor of

���
2
p

. Substituting
x; y; z for l the spin-orbit operator can be written as

Hso �Hx
so �Hy

so �Hz
so ; �39�

with

Hx
so � 2ÿ3=2�ÿS� � Sÿ�Ox � 2ÿ3=2Ox�S� ÿ Sÿ�

Hy
so � 2ÿ3=2i�ÿS� ÿ Sÿ�Oy � 2ÿ3=2iOy�S� � Sÿ�

Hz
so � 2ÿ1=2Oz : �40�

For the two-electron part we have applied �S�;Ekl� �
�Sÿ;Ekl� � 0:
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The advantage of this approach is that one can sep-
arate the ``spin transformation'' from the most time-
consuming part of the direct CI, using only the m � 0
component of the triplet operator inside the r routines.
Instead simple S� and Sÿ operations are performed on
the vectors before or after a Hamilton transformation
using the type of operator de®ned in Eq. (38).

Let us now consider the calculation of the r vector for
the operator Ol (38). In accordance with the non-rela-
tivistic sigma algorithms, the r vector is split into three
terms as given in Eqs. (31) and (32). The two-electron aa
contribution may be rewritten in the following way

raa Ia; Ib
ÿ � �X

Ja

(X
ij

Ia a�iaaja
�� ��Ja


 �
hl

ij

�
X
ijkl

Ia a�iaa�kaalaaja

�� ��Ja

 �

~ijjkl
ÿ �

l

)
C Ja; Ib
ÿ �

�
X

Ja

(X
ij

Ia a�iaaja
�� ��Ja


 �
hl

ij

�
X

i>k;l>j

Ia a�iaa�kaalaaja
�� ��Ja


 �
� ijjkl� ��lÿ�iljkj��l
h i)

C Ja; Ib
ÿ �

; �41�

where the summation has been restricted by de®ning a
symmetric combination of integrals

�ijjkl��l � ~ijjkl
ÿ �� ~kljijÿ � � 3 gl

îjkl
� gl

k̂lij

� �
: �42�

An equivalent expression is obtained for the bb contri-
bution, the only di�erence being a minus sign, which
originates from the anti-symmetric combination of a and
b excitation operators in Tij�1; 0�. For the ab part one
can write

rab Ia; Ib
ÿ � �X

Ja;Jb

X
ijkl

Ia; Ib a�iaajaa�kbalb

���D
ÿa�ibajba�kaala

���Ja; Jb

E
C Ja; Jb
ÿ �

~ijjkl
ÿ �

l

�
X
Ja;Jb

X
ijkl

Ia a�iaaja

�� ��Ja

 �

� Ib a�kbalb

��� ���Jb

D E
C Ja; Jb
ÿ ��ijjkl�ÿl ; �43�

where this time an anti-symmetric combination of
integrals has been de®ned

�ijjkl�ÿl � ~ijjkl
ÿ �

lÿ ~kljijÿ �
l� gl

îjkl
ÿ gl

k̂lij
: �44�

Comparing Eqs. (41) and (43) with Eq. (32), we ®nd that
they are almost identical in structure and the existing
sigma algorithms can be used with trivial changes for the
operators Ol

so, involving a possible prefactor and a sign
change for the bb contributions. The + and ) combi-
nation spin-orbit integrals may be generated on the ¯y.

This result shows that the only thing required in ad-
dition to the already existing non-relativistic CI algo-
rithms is a machinery performing S� and Sÿ operations
on the c and r vectors.

The spin-¯ip operators have the form S� � Ria�iaaib
and Sÿ � Ria�ibaia. The transformation of the CI vector
by S� (i.e. C ! C�) may be written as

C� Ia; Ib
ÿ � �X

Ja;Jb

X
i

Ia a�ia
�� ��Ja


 �
� Ib aib

�� ��Jb

 �

C Ja; Jb
ÿ ��ÿ1�na�Ja� �45�

and this Sÿ transformation

Cÿ Ia; Ib
ÿ � �X

Ja;Jb

X
i

Ia aiaj jJah ihIbja�ibjJbi

� C Ja; Jb
ÿ ��ÿ1�na�Ja��1 : �46�

The factor �ÿ1�na�Ja� appears for S� because the b
creation operator must be moved through the string of
na a creation operators in Ja, whereas for Sÿ there is an
additional a operator aia to the right of a�ib, leading to a

factor �ÿ1�na�Ja��1.
The calculation of C� can be realized in the following

way.

Loop over orbitals i.

Set up arrays P�Ia� � Ja and pha�Ia� where
jIai � a�iajJai pha�Ia� :

Set up arrays M Ib
ÿ � � Jb and phb Ib

ÿ �
where

Ib
�� � � aib Jb

�� �
phb Ib
ÿ �

:
Loop over Ib

C� Ia; Ib
ÿ � � C� Ia; Ib

ÿ �� �ÿ1�na�Ja�

pha�Ia� phb Ib
ÿ �

C P �Ia�;M Ib
ÿ �ÿ �

;
vectorized over Ia,

end loop over Ib,
end loop over i.

The Sÿ operation may be performed in a similar manner.
The S� and Sÿ operations are easily vectorized but

they will inherently be slowed down by the use of indi-
rect addressing in the innermost loop as the operators
change both the a and the b string. However, the oper-
ation counts of the S� and Sÿ operations are nbNdet and
naNdet, respectively, where na and nb are the number of a
and b electrons and Ndet is the number of determinants.
This is to be compared to the operation count for the
two-electron contributions to the r vector which is a
quartic function of the number of electrons and orbitals
times the number of determinants. The time required for
the calculation of S�=Sÿ times a vector is thereby un-
important for the total time required to construct the r
vector.

All the necessary machinery is now available. The
Hamiltonian contains a spin-independent operator and a
spin-orbit operator

H �H0 �Hso ; �47�
where the spin-orbit operator has the form given in
Eqs. (39) and (40). It may be viewed as a sum of six
terms of which H0 and Hz

so have a simple structure
similar to Ol, whereas H

z
so and Hy

so each contain two
terms having the spin-¯ip operators to the left and to the
right, respectively. The construction of the spin-orbit CI
vector may be organized as suggested below:
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loop over operators in H,
loop over CI spaces of r ;

loop over contributing CI spaces of c :
If the operator is of the type Ol�S� � Sÿ� then
step 1: c0 � �S� � Sÿ�c ;
step 2: r � r� Olc0

If operator is of the type �S� � Sÿ�Ol, then
step 1: r0 � Ol c ;
step 2: r � r� �S� � Sÿ�r0

or
r � r� Ol c

End if
end loop over CI spaces of c,

end loop over CI spaces of r,
end loop over operators.

Returning to Sect. 2.4, where the time required for
calculating one element of r was estimated to be six
times that of a non-relativistic operator, we have in our
algorithm above six operators, having the same opera-
tion count as H0. Hence, the algorithm should be very
e�cient.

We decided to use a conservative approach to the
complex arithmetic. Instead of declaring the variables as
complex and using the complex arithmetic provided by
the FORTRAN compiler, we stuck to real variables, and
considered complex numbers as pairs of real numbers. A
number of simple linear algebraic routines for the ma-
nipulation of this form of complex vectors and matrices
were written, utilizing the corresponding routines for
real numbers. The rationale for this approach is that
most compilers have been carefully optimized for real
arithmetic, while the corresponding complex operations
have received less attention. Furthermore, many of the
variables, for example the integrals, are either pure, real
or imaginary. This cannot be exploited if we declare all
the variables as complex.

The construction of the r vector is thus realized as a
number of computational tasks, each task being the
calculation of the action of either S�=Sÿ or a triplet
operator. These computational tasks are organized as a
sequence of calculations of contributions from a given
symmetry-type block of the CI vector to a given sym-
metry-type block of the r vector. The program can
therefore by organized so that only two symmetry-type
blocks are required at any given time. This leads to a
simple parallel algorithm with limited communication
between the computing nodes. The initial version as-
sumes, however, the presence in memory of all the
symmetry-type blocks of a given CI space, and no e�ort
to parallel the program has been undertaken.

For more general choices of one-electron functions,
were the a- and b-spin functions are mixed, it is not
possible to rewrite the r vector in terms of Ms � 0
components of a triplet operator. One must instead use
the general form of triplet operators. In Appendix A, we
describe direct CI algorithms for these operators.

3.5 Symmetry

Exploitation of double-group and time-reversal symme-
try is highly desirable for computational e�ciency. We

start out by specifying one or more reference CI spaces,
giving spin projection and spatial symmetry for each
reference space. The program will then identify other CI
spaces that may interact with properties of the Hamil-
tonian described in Sect. 2.1 and set up the CI super
space. Thus, we do not obtain the double-group
symmetry directly.

For binary groups it is found that whenever a C2

principal axis is present, the Rx and Ry operators change
sign under C2 rotation, whereas Rz maintains the sign.
Therefore, the z term of Hso will only couple determi-
nants which have the same character for C2 rotation,
while x and y will couple determinants which have the
opposite character for C2 rotation. In the Cs case the
same is seen for rh re¯ection. In addition the z compo-
nent will only couple determinants having the same Ms
value, whereas the x and y components will couple states
satisfying DMs � �1. De®ning the two-valued quantity n

n �
�ÿ1�jMsjv�C2� N even

�ÿ1�jMs�1=2jv�C2� N odd ,

8<: �48�

where v�C2� is the character for C2 rotation, the CI
expansion may be restricted to determinants having
n � �1 or n � ÿ1 by the considerations above.

As an example we return to the C2v case. It can be
shown that for an even number of electrons the obser-
vations above correspond to the discovery of two
reducible representations, denoted A and B, grouping
the boson irreps A1;A2;B1;B2 into A � fA1;A2g and
B � fB1;B2g. The same applies for the point groups D2h
and D2, with the additional constraint to a single-
inversion symmetry, which is conserved by the spin-orbit
Hamiltonian. Hence, we still lack some information for
the full exploitation of double-group symmetry for these
point groups.

For Cs and C2, on the other hand, double-group
symmetry is fully accounted for by the introduction of n,
whereas inversion symmetry su�ces for Ci.

For an odd number of electrons the restriction to one
value of n corresponds in fact to selecting one partner of a
Kramer's pair, thus removing one of the Kramer's
partners from the variational space. But the variable n is
not de®ned for C1 and Ci. These point groups are denoted
quaternionic groups and time-reversal symmetry may
only be exploited through quaternion algebra [27] [35].

For a system with an even number of electrons, the
eigenfunctions can be chosen so they are eigenfunctions
of K̂as indicated by Eq. (18). Introducing an alternative
orthonormal basis

j�I; J��i �
1��
2
p �jI ; Ji � jJ ; Ii� I > J

jI; Ji I � J ,

8<: �49�

j�I; J�ÿi � 1���
2
p �jI ; Ji ÿ jJ ; Ii� I > J �50�

and choosing a CI wave function with an eigenvalue of
�1.
K̂j0i � j0i ; �51�
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we can expand an eigenvector j0i in terms of the
combinations as

j0i �
X
I�J

Cr�I; J�j�I ; J��i � i
X
I>J

Ci�I ; J�j�I; J�ÿi : �52�

This explicit use of the Kramer's symmetry reduces the
number of independent parameters by about a factor of
2, as can be realized by comparison with Eq. (28) where
the sum runs over all I ; J . Having a linear vector space
with basis functions j�I; J��i; ij�I ; J�ÿi, the time-reversal
symmetry is preserved if we require a real eigenvector
�cr; ci� and the CI iterations can be carried out using real
algebra.

For C2v in Table 1 it can be shown that restricting
the basis to states of eigenvalue �1 or ÿ1 for the time-
reversal operator corresponds to ``resolving'' the previ-
ously obtained reducible representations A and B into
A1, A2 and B1, B2, respectively. Table 2 shows the values
of n and j for the boson irreps of C2v which enables the
full exploitation of symmetry for an even number of
electrons.

A similar result is obtained for the groups D2h and D2

whereas for the lower-symmetry groups the use of time-
reversal symmetry adds to the savings achieved by
double-group symmetry.

When implementing time-reversal symmetry the CI
vector is formally expanded in the combination basis
Eqs. (49) and (50). Diagonal combinations j�I; I�ÿi are
not included, but in order to maximize symmetry be-
tween the real and imaginary parts it is convenient to
formally include these combinations, ensuring that the
corresponding coe�cients vanish. Letting string indices
increase for an increasing number of electrons, the re-
striction I � J implies na � nb. The outer loop for the CI
super space thus runs over all CI spaces with Ms � 0.
When performing the direct CI calculation, the contri-
butions to the r vector are actually calculated in the SD
basis; when looping over CI spaces, a CI space with
Ms � 0 is expanded to the complete form; if it is a CI
space with Ms > 0 it is ®rst processed as this space, and
then transposed and processed as the corresponding
Ms < 0 space. The saving is still made, as the number of r
coe�cients has been reduced by roughly a factor of two.

In this way we have achieved the maximum exploi-
tation of double-group symmetry. Time-reversal sym-
metry has been fully accounted for except for the point
groups C1 and Ci for cases with an odd number of
electrons. As mentioned above a quaternionic scheme
would be required in this case to restrict the CI to one of
the Kramer's partners. This has not been pursued any
further.

3.6 Diagonalization

A good starting point for the diagonalization is to obtain
a set of start vectors by performing CI calculations using
the spin-independent part of the Hamiltonian. Note that
the initial spin-orbit CI iteration will then correspond to
the methods in Refs. [9, 10], building a small spin-orbit
matrix over a set of CI wave functions which is then
diagonalized.

It has proven advantageous to ®rst neglect the active
two-electron part of the spin-orbit Hamiltonian, thus
merely using an e�ective one-electron operator, de®ned
by the inactive Fock matrix

F ij � hij

X
c

2gîjcc ÿ 3gîccj ÿ 3gĉjic ; �53�

where the sum over c runs over all core (inactive)
orbitals. The most important contributions to the spin-
orbit coupling are in fact accounted for in F and in our
experience, only two or three additional iterations
including the two-electron spin-orbit part is required if
the wave function is ®rst converged using only the
inactive Fock matrix contributions. The savings in
computational time are substantial.

The complex nature of the CI and r vectors does not
allow the use of a traditional Davidson algorithm [37]
which assumes real vectors and matrices. We have
therefore written a solver for the iterative construction
of selected eigenvalues and eigenvectors of a general
complex hermitian matrix. The current routine is a
straightforward generalization of the Davidson method.
We have found that this algorithm often exhibits poor
convergence for relativistic CI wave functions due to the
presence of many near degenerate states, and the need to
truncate the subspace of trial vectors for very large
CI expansions. The inclusion of the so-called inverse
iteration correction [23] and the use of more general
preconditioners than the diagonal should eliminate
the problems of slow convergence.

4 Discussion

We have demonstrated how a determinant based direct
CI for non-relativistic Hamiltonians can be generalized
to treat the relativistic spin-orbit operator, maintaining
the basic structure of the original algorithm in the most
time-consuming step. The a$ b excitation operators
appearing in the spin-orbit Hamiltonian are avoided
inside the r routines by performing separate S�=Sÿ
operations. The resulting algorithm is e�cient, staying
close to the minimal operation count of the operator.

The division of the c and r vectors into blocks, sim-
ilar to a non-relativistic CI space, opens the possibility of
treating very long CI expansions, as one segment of c
and r may be memorized at anyone time, and the
memory requirements are not larger than for the corre-
sponding non-relativistic CI calculation. The vectors are
further divided into blocks, corresponding to a given
RAS1-RAS3 occupation, which opens the possibility of
working with even smaller segments at a time.

Table 2. n and j values of the boson irreducible representations
(irreps) of Cv2

Irrep j n

A1 1 1
A2 )1 1
B1 1 )1
B2 )1 )1
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We suggest a simple way of paralleling the r algo-
rithm by having six operators in H, six CI spaces in c
and r and having a real and imaginary part. There are
6� 12 � 72 contributions to be calculated which are
roughly of the same size, and packets corresponding to
one operator, one CI space of r and one CI space of c
(real or imaginary part) can be sent to di�erent nodes
and calculated independently. A ®ner subdivision can be
obtained by separating the CI spaces into symmetry
blocks or symmetry-type blocks and restricting the cal-
culations at each node to the calculation of the contri-
bution of a given operator and symmetry-type block of
the CI vector to a given symmetry-type block of the r
vector.

The program has been used for CI expansions with
up to 20 million determinants in the CI super space, and
we will report the initial calculations separately. The
code can, in its current form, be e�ectively used to
produce benchmark numbers for CI expansions con-
taining very highly correlated wave functions. The pro-
gram is also used to perform multireference single and
double calculations. This use of the program is, however,
complicated by the very large number of strings that
occur for such expansions. Work is in progress to
eliminate this bottleneck by generating all the informa-
tion about the strings and the annihilation/creation of
electrons when needed eliminating memory and disk
areas. Furthermore, we are studying the use of more
general CI expansions then are allowed in the RAS
concept.

Appendix A

Algorithms for general triplet operators

In the text we described how the spin-orbit operator in
the basis of non-relativistic orbitals can be written in
terms of one- and two-body triplet operators with
Ms � 0. For more general choices of the orbital space,
such as the Kramer's paired orbitals obtained by
diagonalizing the one-body density matrix of the rela-
tivistic wave function, this rewriting of the two-electron
operator is not possible. In this case one must develop an
algorithm for general one- and two-body triplet opera-
tors. This is dealt with in this appendix. Consider as an
example the Ms � 1 component of a two-body triplet
operator which can be written as

T1 � 1=2
X
ijkl

�ijjkl� T �1; 1�ijEkl ÿ djkT �1; 1�il
� �

�54�

� 1=2
X
ijkl

�ijjkl� ayiaaykaalaajb � ayiaaykbalbajb

� �
: �55�

The spin indices a and b do not necessarily correspond
to the ms � �1=2 spin functions; they can be a general
pair of Kramer's orbitals. The corresponding r vector
can be written as

r Ia; Ib
ÿ � �X

Ja;Jb

IaIbjT1jJaJb

 �

C Ja; Jb
ÿ �

; �56�

� raaab Ia; Ib
ÿ �� rabbb Ia; Ib

ÿ �
; �57�

where

raaab Ia; Ib
ÿ � � 1=2

X
ijklJaJb

�ij=kl� IaIb ayiaaykaalaajb

��� ���JaJb

D E
� C Ja; Jb

ÿ �
; �58�

rabbb Ia; Ib
ÿ � � 1=2

X
ijklJaJb

�ij=kl� IaIb ayiaaykbalbajb

��� ���JaJb

D E
� C Ja; Jb

ÿ �
; �59�

Let us consider one of the terms, say raaab. Separating
the a and b operators gives

raaab Ia; Ib
ÿ � � P

2

X
ijklJaJb

�ij=kl� Ia ayiaaykaala

��� ���Ja

D E
� Ib ajb

�� ��Jb

 �

C Ja; Jb
ÿ �

; �60�
with

P � �ÿ1�NaNb : �61�
Using the algorithms of Ref. [22] as an example we can
calculate the contributions from a given orbital index j
to aaaab in the following steps

b L Kb
ÿ �ÿ ��� � � s Kb

ÿ �
ajb b R Kb

ÿ �ÿ ��� �
; �62�

Cj Ja;Kb
ÿ � � Ps Kb

ÿ �
C Ja;R Kb

ÿ �ÿ �
; �63�

rj Ia;Kb
ÿ � � 1=2

X
iklJa

�ijjkl� Ia ayiaaykaala

��� ���Ja

D E
Cj Ja;Kb
ÿ �

;

�64�
r Ia; L Kb

ÿ �ÿ � � r Ia; L Kb
ÿ �ÿ �� rj Ia;K� � : �65�

In the ®rst step, one obtains the strings b�R�Kb��
containing orbital j, the corresponding strings with
orbital j annihilated, b�L�Kb�� and the sign array s�Kb�.
In the next step, the C matrix is gathered to obtain a
smaller matrix Cj containing only the b strings belonging
to b�R�Kb��. In the third and most time-consuming step
the non-vanishing excitations in the a space are obtained
and the r vector rj is constructed for the non-trivial beta
strings. To minimize cache tra�c all contributions to a
given row of rj should be obtained before proceeding to
the next row, and vectorization over Kb can be
employed. In the ®nal fourth step we scatter the elements
of rj to the complete r vector. The other contribution to
the r vector is obtained in a similar way.

The e�ciency of the time-consuming third step
depends on the number of b strings in the reduced list.
If this number of b strings is large, the excitations
hIajayiaaykaalajJai are used for a large number for a b-
string and the computation of excitation matrix elements
will be a small part of the total computation. A large
number of b strings also improves the use of vector or
superscalar instructions. Conversely, if the number of b
strings is small, the calculation in this critical step will be
dominated by construction of the a excitations, and the
step will become rather ine�cient. For typical multiref-
erence CI expansions the number of b strings in Cj is
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large enough to support an e�cient realization of this
step. One can inquire whether it would be advantageous
to use the above construction also for the operators
discussed in the text. A detailed analysis of operation
counts reveals that the operation count for the direct use
of the general triplet operators is about 30% less than
the method of rewriting the operators as Ms � 0 com-
ponents. We did not ®nd this su�cient to warrant the
additional coding at the present time.
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